\(\int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [232]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 112 \[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2^{\frac {1}{2}+n} \operatorname {AppellF1}\left (-\frac {1}{4},-\frac {3}{2}+n,1,\frac {3}{4},-\frac {a-a \sec (c+d x)}{a+a \sec (c+d x)},\frac {a-a \sec (c+d x)}{a+a \sec (c+d x)}\right ) \left (\frac {1}{1+\sec (c+d x)}\right )^{-\frac {1}{2}+n} (a+a \sec (c+d x))^n}{d \sqrt {\tan (c+d x)}} \]

[Out]

-2^(1/2+n)*AppellF1(-1/4,-3/2+n,1,3/4,(-a+a*sec(d*x+c))/(a+a*sec(d*x+c)),(a-a*sec(d*x+c))/(a+a*sec(d*x+c)))*(1
/(1+sec(d*x+c)))^(-1/2+n)*(a+a*sec(d*x+c))^n/d/tan(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {3974} \[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2^{n+\frac {1}{2}} \left (\frac {1}{\sec (c+d x)+1}\right )^{n-\frac {1}{2}} (a \sec (c+d x)+a)^n \operatorname {AppellF1}\left (-\frac {1}{4},n-\frac {3}{2},1,\frac {3}{4},-\frac {a-a \sec (c+d x)}{\sec (c+d x) a+a},\frac {a-a \sec (c+d x)}{\sec (c+d x) a+a}\right )}{d \sqrt {\tan (c+d x)}} \]

[In]

Int[(a + a*Sec[c + d*x])^n/Tan[c + d*x]^(3/2),x]

[Out]

-((2^(1/2 + n)*AppellF1[-1/4, -3/2 + n, 1, 3/4, -((a - a*Sec[c + d*x])/(a + a*Sec[c + d*x])), (a - a*Sec[c + d
*x])/(a + a*Sec[c + d*x])]*((1 + Sec[c + d*x])^(-1))^(-1/2 + n)*(a + a*Sec[c + d*x])^n)/(d*Sqrt[Tan[c + d*x]])
)

Rule 3974

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-2^(m
 + n + 1))*(e*Cot[c + d*x])^(m + 1)*((a + b*Csc[c + d*x])^n/(d*e*(m + 1)))*(a/(a + b*Csc[c + d*x]))^(m + n + 1
)*AppellF1[(m + 1)/2, m + n, 1, (m + 3)/2, -(a - b*Csc[c + d*x])/(a + b*Csc[c + d*x]), (a - b*Csc[c + d*x])/(a
 + b*Csc[c + d*x])], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = -\frac {2^{\frac {1}{2}+n} \operatorname {AppellF1}\left (-\frac {1}{4},-\frac {3}{2}+n,1,\frac {3}{4},-\frac {a-a \sec (c+d x)}{a+a \sec (c+d x)},\frac {a-a \sec (c+d x)}{a+a \sec (c+d x)}\right ) \left (\frac {1}{1+\sec (c+d x)}\right )^{-\frac {1}{2}+n} (a+a \sec (c+d x))^n}{d \sqrt {\tan (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2164\) vs. \(2(112)=224\).

Time = 17.52 (sec) , antiderivative size = 2164, normalized size of antiderivative = 19.32 \[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Result too large to show} \]

[In]

Integrate[(a + a*Sec[c + d*x])^n/Tan[c + d*x]^(3/2),x]

[Out]

-1/21*(2^(1/2 + n)*Cot[c + d*x]^2*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^n*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^n*(a*(
1 + Sec[c + d*x]))^n*(21*Hypergeometric2F1[-1/4, -1/2 + n, 3/4, Tan[(c + d*x)/2]^2] + 7*AppellF1[3/4, -1/2 + n
, 1, 7/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2 + 7*Hypergeometric2F1[3/4, -1/2 + n, 7/4
, Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2 - 3*AppellF1[7/4, -1/2 + n, 1, 11/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*
x)/2]^2]*Tan[(c + d*x)/2]^4))/(d*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*((2^(-1/2 + n)*(Cos[c + d*x]*Sec[(c + d
*x)/2]^2)^n*Sec[c + d*x]^2*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^n*(21*Hypergeometric2F1[-1/4, -1/2 + n, 3/4, Tan[
(c + d*x)/2]^2] + 7*AppellF1[3/4, -1/2 + n, 1, 7/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^
2 + 7*Hypergeometric2F1[3/4, -1/2 + n, 7/4, Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2 - 3*AppellF1[7/4, -1/2 + n,
 1, 11/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^4))/(21*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x
])]*Tan[c + d*x]^(3/2)) + (2^(-1/2 + n)*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^n*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^
n*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x]))*(21*Hypergeometric2F1[-
1/4, -1/2 + n, 3/4, Tan[(c + d*x)/2]^2] + 7*AppellF1[3/4, -1/2 + n, 1, 7/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)
/2]^2]*Tan[(c + d*x)/2]^2 + 7*Hypergeometric2F1[3/4, -1/2 + n, 7/4, Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2 - 3
*AppellF1[7/4, -1/2 + n, 1, 11/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^4))/(21*(Cos[c + d
*x]/(1 + Cos[c + d*x]))^(3/2)*Sqrt[Tan[c + d*x]]) - (2^(1/2 + n)*n*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^n*(Cos[(c
 + d*x)/2]^2*Sec[c + d*x])^(1 + n)*(-(Sec[(c + d*x)/2]^2*Sin[c + d*x]) + Cos[c + d*x]*Sec[(c + d*x)/2]^2*Tan[(
c + d*x)/2])*(21*Hypergeometric2F1[-1/4, -1/2 + n, 3/4, Tan[(c + d*x)/2]^2] + 7*AppellF1[3/4, -1/2 + n, 1, 7/4
, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2 + 7*Hypergeometric2F1[3/4, -1/2 + n, 7/4, Tan[(c
 + d*x)/2]^2]*Tan[(c + d*x)/2]^2 - 3*AppellF1[7/4, -1/2 + n, 1, 11/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]
*Tan[(c + d*x)/2]^4))/(21*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Tan[c + d*x]]) - (2^(1/2 + n)*(Cos[c + d*
x]*Sec[(c + d*x)/2]^2)^n*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^n*(7*AppellF1[3/4, -1/2 + n, 1, 7/4, Tan[(c + d*x)/
2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2] + 7*Hypergeometric2F1[3/4, -1/2 + n, 7/4, Tan[(
c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2] - 6*AppellF1[7/4, -1/2 + n, 1, 11/4, Tan[(c + d*x)/2]^2, -T
an[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^3 + 7*Tan[(c + d*x)/2]^2*((-3*AppellF1[7/4, -1/2 + n, 2
, 11/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/7 + (3*(-1/2 + n)*Appell
F1[7/4, 1/2 + n, 1, 11/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/7) - 3
*Tan[(c + d*x)/2]^4*((-7*AppellF1[11/4, -1/2 + n, 2, 15/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d
*x)/2]^2*Tan[(c + d*x)/2])/11 + (7*(-1/2 + n)*AppellF1[11/4, 1/2 + n, 1, 15/4, Tan[(c + d*x)/2]^2, -Tan[(c + d
*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/11) + (21*Csc[(c + d*x)/2]*Sec[(c + d*x)/2]*(Hypergeometric2F1[
-1/4, -1/2 + n, 3/4, Tan[(c + d*x)/2]^2] - (1 - Tan[(c + d*x)/2]^2)^(1/2 - n)))/4 + (21*Sec[(c + d*x)/2]^2*Tan
[(c + d*x)/2]*(-Hypergeometric2F1[3/4, -1/2 + n, 7/4, Tan[(c + d*x)/2]^2] + (1 - Tan[(c + d*x)/2]^2)^(1/2 - n)
))/4))/(21*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Tan[c + d*x]]) - (2^(1/2 + n)*n*(Cos[c + d*x]*Sec[(c + d
*x)/2]^2)^n*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(-1 + n)*(21*Hypergeometric2F1[-1/4, -1/2 + n, 3/4, Tan[(c + d*x
)/2]^2] + 7*AppellF1[3/4, -1/2 + n, 1, 7/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2 + 7*Hy
pergeometric2F1[3/4, -1/2 + n, 7/4, Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2 - 3*AppellF1[7/4, -1/2 + n, 1, 11/4
, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^4)*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/
2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(21*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Tan[c + d*
x]])))

Maple [F]

\[\int \frac {\left (a +a \sec \left (d x +c \right )\right )^{n}}{\tan \left (d x +c \right )^{\frac {3}{2}}}d x\]

[In]

int((a+a*sec(d*x+c))^n/tan(d*x+c)^(3/2),x)

[Out]

int((a+a*sec(d*x+c))^n/tan(d*x+c)^(3/2),x)

Fricas [F]

\[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{n}}{\tan \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^n/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c) + a)^n/tan(d*x + c)^(3/2), x)

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{n}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+a*sec(d*x+c))**n/tan(d*x+c)**(3/2),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**n/tan(c + d*x)**(3/2), x)

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{n}}{\tan \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^n/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^n/tan(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{n}}{\tan \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^n/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^n/tan(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^n}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}} \,d x \]

[In]

int((a + a/cos(c + d*x))^n/tan(c + d*x)^(3/2),x)

[Out]

int((a + a/cos(c + d*x))^n/tan(c + d*x)^(3/2), x)